

Mining and Metallurgical Institute named after O.A. Baikonurov Department «Metallurgy and mineral processing»

EDUCATIONAL PROGRAM

6B07219 - Non-Ferrous Metals Metallurgy

Code and classification of the field of education: Code and classification of areas of study:	6B07 - Engineering, manufacturing and construction industries6B072 - Manufacturing and processing industries
Group of educational programs:	B071 - "Mining and extraction of minerals"
NQF level:	Level 6 - higher education and practical experience
ORC level:	Level 6 - a wide range of special (theoretical and practical) knowledge (including innovative). Independent search, analysis and evaluation of professional information
Training period:	4 years
Volume of loans:	240

Almaty 2023

The educational program «6B07219 - Non-Ferrous Metals Metallurgy» was approved at a meeting of the Academic Council of KazNRTU named after K.I.Satpayev.

Protocol No. 5 dated "24 " 11 2022

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of Kaznrtu named after K.I.Satpayev.

Protocol No. 3 dated "17 " 11 20.22

The educational program 6B07219 - Non-Ferrous Metals Metallurgy was developed by the Academic Committee for the Production and Manufacturing Industries track

Full name	Academic degree/ academic title	Job title	Place of work	Signature
Chairman of the A	cademic Comm	ittee:		-
Barmenshinova M.B.	c.t.s., associate professor	Head of the Department of MaMP	KazNITU named after K.I. Satpaeva	top
Teaching staff:				101
Baimbetov B.S.	c.t.s., docent	Professor of the Department of MaMP	KazNITU named after K.I. Satpaeva	baue
Moldabaeva G.Zh.	c.t.s.	associate professor	KazNRTU named after K.I. Satpayev	SUm-
Employers:			- and suparer	
Ospanov E.A.	Doctor of Technical Sciences	head of the Department of Complex processing of technogenic raw materials	«Kazakhmys Corporation» LLP	Reef
Mishra B	PhD doctor	Director of the Institute of Metalworking	Worcester Polytechnic Institute (USA)	B. Mishn
Students		~		
Nurdan M.	master	3rd year doctoral student	KazNTU named after K.I. Satpayev	Hell

Table of contents

List of abbreviations and designations

1. Description of the educational program

2. The purpose and objectives of the educational program

3. Requirements for the evaluation of learning outcomes of the educational program

4. Passport of the educational program

4.1. General information

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

5. Curriculum of the educational program

6. Additional educational programs (Minor)

List of abbreviations and symbols

NAO «Kazakh National Research Technical University named after K.I. Satpayev» - NAO KazNRTU named after K.I. Satpayev;

SOSE - State obligatory standard of education of the Republic of Kazakhstan;

MNiVO RK - Ministry of Science and Higher Education of the Republic of Kazakhstan;

EP - educational program;

IWS - independent work of a student (student, undergraduate, doctoral student);

IWST - independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC - working curriculum;

CED - catalog of elective disciplines;

UC - university component;

CC - component of choice;

NQF - National Qualifications Framework;

SQF - Sectoral Qualifications Framework;

LO - learning outcomes;

KC - key competencies.

1. Description of the educational program

It is intended for implementation of profile training of bachelors on educational program 6B07219 - "Metallurgy of non-ferrous metals" at Satbayev University and developed within the framework of the direction "Production and processing industries".

This document meets the requirements of the following legislative acts of the Republic of Kazakhstan and regulatory documents of the Ministry of Education and Science of the Republic of Kazakhstan:

- The Law of the Republic of Kazakhstan «On Education» with amendments and additions within the framework of legislative changes to increase the independence and autonomy of universities dated 04.07.18 No. 171-VI;

- The Law of the Republic of Kazakhstan «On Amendments and Additions to Some Legislative Acts of the Republic of Kazakhstan on the expansion of academic and managerial independence of higher educational institutions» dated 04.07.18 No. 171-VI;

– Order of the Minister of Education and Science of the Republic of Kazakhstan dated 30.10.18 No. 595 «On approval of Standard rules for the activities of educational organizations of appropriate types»;

- State mandatory standard of higher education (Appendix 7 to the Order of the Minister of Education and Science of the Republic of Kazakhstan dated 31.10.18 No. 604;

- Resolution of the Government of the Republic of Kazakhstan dated 19.01.12 No. 111 «On approval of Standard rules for admission to education organizations implementing educational programs of higher education» with amendments and additions dated 14.07.16 No. 405;

– Resolution of the Government of the Republic of Kazakhstan dated December 27, 2019 No. 988 «On approval of the State Program for the Development of Education and Science of the Republic of Kazakhstan for 2020-2025»;

Resolution of the Government of the Republic of Kazakhstan dated
 31.12.2019 No. 1050 «On approval of the State Program of Industrial and
 innovative Development of the Republic of Kazakhstan for 2020-2025»;

 – «National Qualifications Framework» approved by the Protocol of 16.06.2016 by the Republican Tripartite Commission on Social Partnership and Regulation of Social and Labor Relations;

– Industry Qualifications Framework "Mining and Metallurgical Complex" dated 30.07.2019 No. 1;

- Strategy «Kazakhstan-2050»: a new political course of the established state. Message of the President of the Republic of Kazakhstan - Leader of the Nation N.A. Nazarbayev to the people of Kazakhstan. Astana, 14.12.2012;

- «New development opportunities in the context of the Fourth Industrial Revolution». Message of the President of the Republic of Kazakhstan N. Nazarbayev to the people of Kazakhstan. 10.01.2018; – «The third modernization of Kazakhstan: global competitiveness». Message of the President of the Republic of Kazakhstan N.Nazarbayev to the people of Kazakhstan. 31.01.2017

Introduction to the educational program. The development of an innovative economy initially forms the so-called double helices of interaction - between universities (science) and business, business and government, etc., which then form a «triple spiral». Within the framework of the triple helix model, interdisciplinary knowledge is generated, developed by interdisciplinary teams united for a short time to work on a specific problem of the real world. In the triple helix model, universities, along with educational and research functions, additionally increase entrepreneurial functions by actively participating in the cultivation of startups together with industry, stimulated by the state.

The concept of this scientific and educational program is based on the triple helix model, which involves the creation of innovative solutions based on interdisciplinary research and educational programs (Figure 1).

Figure 1 - The concept of scientific and educational programs

The previously established structure of education, based on in-depth training of specialists in narrowly focused specialization, has led to the emergence of interdisciplinary barriers and hindering the development of new "growth points" that are located at the junctions of disciplines.

Modern needs require graduates not only to have in-depth knowledge in their chosen field of science, but also to understand the mechanisms and tools for implementing their ideas in practice.

The program corresponds to the unified state policy of long-term socioeconomic development of the country, training of highly qualified personnel based on the achievements of science and technology, effective use of domestic scientific, technological and human resources potential of the republic.

The program is comprehensive and knowledge-intensive. The efficiency of using its results is of strategic importance for the republic.

The program is complex and science-intensive. The efficiency of using its results is of strategic importance for the republic.

The program is aimed at training specialists in key areas of the mining and metallurgical industry, adapted to the high-tech sectors of the economy of the Republic of Kazakhstan based on the development of priority areas of science and technology, development of knowledge-intensive industries, competitive technologies in the processing of technogenic raw materials and waste.

The developed Program is the basis for a coherent and flexible system of training of advanced scientific and innovative personnel combining deep fundamental knowledge with a broad scientific outlook and the ability to independently conduct research work with a comprehensive understanding of the main problems in the mining and metallurgical industry.

The benefits of the Program are:

- highly qualified continuous training of young scientists and personnel for the university and the economy of the republic on new methods and specialized Minor - programs;
- active involvement of talented students in priority research (fundamental) and scientific and technical (applied) works;

- student participation in priority scientific works, formation of new knowledge and skills, acquisition of professional work experience (seniority) to continue scientific research in master's and doctoral programs with the development of innovative technologies for the mining and metallurgical industry.

Training of specialists provides training in the main directions, each of which includes modern fundamental content necessary for training of highly qualified specialists demanded by the economy of the republic.

Educational program 6B07219 - "Non-ferrous Metallurgy" includes fundamental, natural science, general engineering and professional training of bachelors in the field of non-ferrous metallurgy in accordance with the development of science and technology, as well as the changing needs of the mining and metallurgical industry.

The distinctive feature of the program is that the program provides adaptation of the graduate to the industrial sector, due to the content of 40% of general engineering disciplines in the educational program.

The graduate receives a fundamental set of general engineering disciplines as well as a maximum set of specialized disciplines.

The program provides in-depth study of technological mineralogy, basics of mineral processing, general metallurgy, theory of metallurgical processes, metallurgy of heavy non-ferrous, noble, light, rare and disseminated metals, metallurgical heat engineering, metallurgical engineering (in English), heat and power engineering of metallurgical processes, alloying of non-ferrous metals, organization and planning of experiments, modern environmental schemes and forecasting in metallurgy.

The area of professional activity of graduates who have mastered the Bachelor's degree program includes:

- processes of beneficiation and processing of ores and other materials to produce concentrates and intermediates;

- processes of obtaining metals and alloys, metal products of required quality;

- Processing processes that change the chemical composition and structure of metals (alloys) to achieve certain properties.

A graduate of the program will be able to perform professional activities in the mining and metallurgical complex in engineering and working positions, at metallurgical enterprises, in design organizations, in metallurgical research centers.

Objects of professional activity of graduates, who have mastered the Bachelor's degree program are:

- processes and devices for enrichment and processing of mineral and technogenic raw materials with obtaining semi-products, production and processing of non-ferrous metals, as well as products made of them;

- processes and devices to ensure energy and resource conservation and environmental protection during technological operations;

- projects, materials, methods, instruments, installations, technical and regulatory documentation, quality management system, mathematical models;

– design and research divisions, production divisions.

Types and tasks of professional activity of a graduate

List of professional activities and corresponding professional tasks:

Types of professional activities	Professional tasks
research activities	- carrying out experimental research;
	- performing literature and patent searches, preparing technical reports, information reviews, publications;
	- study of scientific and technical information, domestic and foreign
	experience on the subject of research;
project analysis	- performing technical and economic analysis of the development of
	projects of new and reconstruction of existing shops, industrial
	units and equipment;
	- analyzing designs and calculations of technological equipment;
	- analyzing design and working technical documentation;
	- development and analysis of mathematical models;
production activities	- realization of technological processes of enrichment and
	processing of mineral natural and man-made raw materials;
	- implementation of technological processes of obtaining and
	processing of metals and alloys, as well as products made of them;
	- implementation of measures to protect the environment from technogenic impacts of production;
	- implementation of measures to ensure product quality;
	- organization of workplaces, their technical equipment, placement
	of technological equipment;
	- control over observance of technological discipline;
	- organization of maintenance of technological equipment;
design and technological	- collection of information for feasibility studies and participation in
activities	the development of projects for new and reconstruction of existing
	shops, industrial units and equipment;
	- calculation and design of elements of technological equipment;
	- development of design and working technical documentation;

2. Goal and objectives of the educational program

The purpose of EP 6B07219 - "Metallurgy of non-ferrous metals" is:

- Preparation of competitive personnel with critical thinking, fundamental and applied knowledge, research skills in the field of non-ferrous metals metallurgy, capable of making complex and effective decisions in the processing of mineral raw materials from concentrates to metals and their compounds.

The objectives of EP 6B07219 - "Metallurgy of non-ferrous metals" are:

- Formation of skills and abilities to choose and evaluate methods of environmental protection from anthropogenic impact in urbanized areas;

- Strengthening the technological component of classical science education, to provide knowledge of modern technologies without lowering the bar of fundamental education;

- basics of development and carrying out fundamental and applied research in the field of non-ferrous metals metallurgy using new achievements of technologies, new generation techniques and ecomonitoring of enterprises;

- ensuring the interaction of fundamental and applied science with the educational process at all its stages, including the use of the results of joint research work in lecture courses, experimental base for the performance of educational and research, laboratory and course work, industrial and pregraduation practice;

- ensuring training and retraining of personnel for the domestic mining and metallurgical sector in close cooperation with state corporations and the real sector of the economy, employment of graduates in knowledge-intensive innovative companies and other research centers.

3 Requirements for assessment of learning outcomes of the educational program

Because of mastering the educational program of Bachelor's degree 6B07219 - "Metallurgy of non-ferrous metals», the graduate should have general cultural, general professional and professional competences.

A graduate who has mastered the Bachelor's degree program shall possess the following competencies:

general cultural competencies:

- ability to use the basics of philosophical knowledge, analyze the main stages and patterns of historical development to realize the social significance of their activities;

- the ability to use the basics of economic knowledge in assessing the effectiveness of the results of activities in various spheres;

- ability to communicate orally and in writing in Russian and foreign languages to solve problems of interpersonal and intercultural interaction;

- ability to work in a team, tolerantly accepting social, ethnic, confessional and cultural differences;

- ability to self-organization and self-education;

- ability to use general legal knowledge in various spheres of activity;

- ability to maintain an adequate level of physical fitness to ensure full social and professional activity;

- readiness to use basic methods of protection of production personnel and population from possible consequences of accidents, catastrophes, natural disasters.

general professional competencies:

- readiness to use fundamental general engineering knowledge;

- readiness to critically analyze the accumulated experience, to change the profile of one's professional activity if necessary;

- ability to realize the social significance of his/her future profession;

- readiness to combine theory and practice to solve engineering problems;

- ability to apply in practice the principles of rational use of natural resources and environmental protection;

- ability to use normative legal documents in his/her professional activity;

- readiness to choose measuring instruments in accordance with the required accuracy and operating conditions;

- ability to follow metrological norms and rules, fulfill the requirements of national and international standards in the field of professional activity;

- ability to use the principles of quality management system.

professional competencies, corresponding to the type(s) of professional activity for which the Bachelor's program is oriented:

research activities:

- ability to analyze and synthesize;

- ability to choose research methods, plan and conduct necessary experiments, interpret results and draw conclusions;

- readiness to use physical and mathematical apparatus to solve problems

arising in the course of professional activity;

- readiness to use basic concepts, laws and models of thermodynamics, chemical kinetics, heat and mass transfer;

- ability to choose and apply appropriate methods of modeling physical, chemical and technological processes.

project and analytical activities:

- ability to perform technical and economic analysis of projects;

- ability to use the process approach;

- ability to use information tools and technologies in solving problems arising in the course of professional activity;

- readiness to make calculations and draw conclusions when solving engineering problems.

production and technological activities:

- ability to implement and adjust technological processes in metallurgy and material processing;

- readiness to identify objects for improvement in engineering and technology;

- ability to select materials for products of various purposes, taking into account operational requirements and environmental protection;

- readiness to assess risks and determine measures to ensure safety of technological processes.

design and technology activities:

- ability to perform elements of projects;

- readiness to use standard software tools in designing;

- ability to justify the choice of equipment for the implementation of technological processes.

additional competencies in the field of organizational and management activities agreed with employers:

- ability to apply methods of technical and economic analysis;

- readiness to use the principles of production management and personnel management;

- readiness to use organizational and legal bases of managerial and entrepreneurial activity;

- ability to organize the work of the team to achieve the set goal.

additional general professional competencies (APCs) focused on knowledge areas: communication, individual and teamwork, lifelong learning, additional engineering skills:

- ability to acquire new, expand and deepen previously acquired knowledge, skills and competencies in various areas of life necessary for successful realization in the field of professional activity, including at the intersection of different areas of activity and fields of sciences.

Special requirements for graduation on this OP:

- the student should have a general idea of the thesis topic/research plans, and contact potential supervisors one year prior to expected graduation;

- a review meeting is held one year prior to expected graduation to introduce

the student to potential supervisors and to expedite the student's selection of thesis/project topics;

- in order to collect the necessary data and study the actual tasks, methods and procedures on the topic of the thesis, the student undergoes an industrial practice;

- upon completion of the internship, the student shall contact the supervisor in writing or orally and report the results of the work, but not more than one week after the beginning of the 4th year of study;

- within 4 weeks of the start of the placement, the student and supervisor must discuss and decide on the type (research, project or independent study) and topic of the thesis. This is an extremely important discussion and decision, as it is impossible to change the topic and type of work any further;

- the topic of the thesis (project) and the supervisor are assigned to a student or a group of students no more than six weeks after the beginning of the final year of study and is approved by the order of the rector of the higher education institution.

4. Passport of the educational program

4.1. General information

№	Field name	Note
1	Code and classification of	6B07 - Engineering, manufacturing and construction
	the field of education	industries
2	Code and classification of	6B072 - Manufacturing and processing industries
	areas of study	
3	Group of educational	B071 - "Mining and extraction of minerals"
	programs	
4	Name of the educational	Metallurgy of non-ferrous metals
	program	
5	Brief description of the educational program	is aimed at preparing graduates to carry out research, production-technological, design-analytical and design- technological types of professional activities in various areas of metallurgy and includes analysis and implementation of technological processes, operation and design of equipment in various areas of metallurgical production.
6	Purpose of the OP	training of competitive personnel with critical thinking, fundamental and applied knowledge, research skills in the field of non-ferrous metals metallurgy, capable of making complex and effective decisions in the processing of mineral raw materials from concentrates to metals and their compounds.
7	Type of OP	New
8	NQF level	Level 6 - higher education and practical experience
9	ORC level	Level 6 - a wide range of specialized (theoretical and practical) knowledge (including innovative knowledge). Independent search, analysis and evaluation of professional information
10	Distinctive features of the EP	no
11	List of competencies of the	Professional Competencies;
	educational program:	Research Competencies;
		Basic competencies and knowledge;
		Communicative competencies;
		General competencies;
		Cognitive competencies;
		Creative competences;
		Information and communication competencies.
12	Learning outcomes of the educational program:	 LO1 - practicing knowledge of Kazakh, Russian and foreign languages to solve problems arising in the course of professional activity; LO2 - demonstrates knowledge of culture, basics of legal system and legislation of the Republic of Kazakhstan; LO3 - demonstrates fundamental knowledge and understanding of basic chemical laws in metallurgical processes;
		LO4 - implements and corrects technological processes in

		metallurgy of non-ferrous metals; LO5 - applies knowledge of physical and mathematical apparatus to solve production problems arising in technological processes of non-ferrous metals metallurgy; LO6 - performs professional function in the field of metallurgy, using methods of mathematical analysis and modeling, theoretical and experimental research; LO7 - applies in practice the principles of rational use of
		natural resources; LO 8 - justifies the choice of equipment for the implementation of technological processes; LO9 - applies applied software tools and modern methods of information processing in the sphere of professional
		activity; LO10 - applies experimental computational methods to solve various practice-oriented assignments of a research nature;
		LO11 - applies appropriate methods of modeling physical, chemical and technological processes in the field of metallurgy; LO12 - Demonstrates knowledge in the field of scientific
		and technological innovation, skills and abilities to search, evaluate, select information.
13	Form of training	Full-time full-time
14	Term of study	4 years
15	Loan volume	240
16	Languages of instruction	Kazakh/Russian
17	Academic degree awarded	Bachelor of Engineering and Technology
18	Developer(s) and authors:	Barmenshinova M.B. Dzhumankulova S.K.

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

№	Name of the discipline	Brief description of the discipline	Amount of				Forn	ned lea	rning o	outcom	nes (cod	les)			
			credits	L01	LO2	LO3	LO4	L05	L06	LO7	L08	LO9	LO10 I	.011	LO12
		Cycle of general e	ducation dis	sciplin	es	•									
		Required	component	_											
1		After determining the level (according to the results of	10	V											
		diagnostic testing or IELTS results), students are assigned to													
		groups and disciplines. The name of the discipline													
		corresponds to the level of English language proficiency.													
		When moving from level to level, the prerequisites and post-													
		requisites of the disciplines are observed.													
2	Kazakh (Russian)	The course covers socio-political, socio-cultural spheres of	10	V											
	language	communication and functional styles of the modern Kazakh													
		(Russian) language. The course highlights the specifics of													
		scientific style in order to develop and activate students													
		professional-communicative skills and abilities. The course													
		allows students to practically master the basics of scientific													
		style and develops the ability to produce structural and													
		semantic analysis of the text.													
3		The purpose of the discipline is to master the forms and	8	V											
		methods of forming a healthy lifestyle within the system of													
		professional education. Familiarization with the natural-													
		scientific bases of physical education, mastery of modern													
		health-improving technologies, basic methods of independent													
		physical training and sports. And also within the framework													
		of the course the student will master the rules of refereeing in													
		all kinds of sports.													
4		The task of studying the discipline is to acquire theoretical	5				V								
		knowledge about information processes, new information													
		technologies, local and global networks of computers,													
		methods of information protection; to obtain skills in using													
		text editors and table processors; to create databases and													
		various categories of application programs.			16										
5		The course studies historical events, phenomena, facts,	5		V										
		processes that took place on the territory of Kazakhstan from													
		ancient times to the present day. The sections of the													
		discipline include: introduction to the history of Kazakhstan;													
		steppe empire of Turks; early feudal states on the territory of													

		Kazakhstan; Kazakhstan during the Mongol conquest (XIII										
		century); medieval states in XIV-XV centuries. Also										
		considered are the main stages of formation of Kazakh										
		statehood: the era of the Kazakh Khanate XV-XVIII										
		centuries. Kazakhstan in the Russian Empire; Kazakhstan in										
		the period of civil confrontation and under the totalitarian										
		system; Kazakhstan during the Great Patriotic War;										
		Kazakhstan in the period of independence and at the present										
		stage.										
6	Philosophy	Philosophy shapes and develops critical and creative	5			V						
Ŭ	i mosopny	thinking, worldview and culture, provides knowledge about	5			•						
		the most general and fundamental problems of existence and										
		endows them with the methodology for solving various										
		theoretical and practical issues. Philosophy broadens the										
		horizon of vision of the modern world, shapes citizenship and										
		patriotism, contributes to the education of self-esteem,										
		realizes the value of human existence. It teaches to think and										
		act correctly, develops skills of practical and cognitive										
		activity, helps to seek and find ways and means of living in										
7		harmony with oneself, society and the world around.	2			N.C.						
/		The aim of the course: the formation of theoretical	3			V						
		knowledge about society as an integral system, its structural										
	political science)	elements, links and relations between them, the features of										
		their functioning and development, as well as political										
		socialization of students of technical university, providing the										
		political aspect of training a highly qualified specialist on the										
		basis of modern world and domestic political thought.										
		Tasks of mastering the discipline: study of basic values of										
		social and political culture and readiness to rely on them in										
		their personal, professional and general cultural development;										
		study and understanding of the laws of development of										
		society and the ability to operate with this knowledge in										
		professional activities; ability to analyze social and political										
		problems, processes, etc.; the ability to analyze social and										
		political problems, processes, etc.; the ability to analyze the										
		laws of development of society.										
8		It is intended to familiarize students with the cultural	3		V			Т	Т	Т	Т	
	knowledge (culturology	achievements of mankind, to understand and assimilate the										
	psychology)	basic forms and universal laws of formation and development										
		of culture, to develop in them the desire and skills of										
		independent comprehension of the wealth of values of world										

		culture for self-improvement and professional growth.							
		During the course of cultural studies the student will consider							
		the general problems of the theory of culture, the leading							
		cultural concepts, universal regularities and mechanisms of							
		formation and development of culture, the main historical							
		stages of formation and development of Kazakhstani culture,							
		its most important achievements.							
		During the study of the course students acquire theoretical							
		knowledge, practical skills and abilities forming their							
		professional orientation from the position of psychological							
		aspects.							
	-	Cycle of general ed	ucation discip	olines					
		Čomponen							
9	Fundamentals of anti-	The course introduces students to the improvement of socio-	5		V				
	corruption culture and law	economic relations of Kazakhstan society, psychological							
	-	peculiarities of corrupt behavior. Special attention is paid to							
		the formation of anti-corruption culture, responsibility for							
		corrupt acts in various currents. The purpose of studying the							
		discipline "Fundamentals of anti-corruption culture and law"							
		is to increase public and individual legal awareness and							
		protection culture of students, as well as mechanisms of							
		knowledge system and civic position to counteract corruption							
		as an anti-social phenomenon. Expected results: to realize the							
		values of moral consciousness and follow moral norms in							
		everyday practice; to work on raising the level of moral and							
		legal culture; to use spiritual and moral mechanisms to							
		prevent corruption.							
10	Fundamentals of	The discipline studies the basics of economics and	5		V				
		entrepreneurship from the point of view of science and law;							
	Entrepreneurship	peculiarities, problematic aspects and development prospects;							
		practice and practice of entrepreneurship as a system of							
		economic and organizational relations of business structures;							
		entrepreneurs' readiness for innovative sensitivity. The							
		discipline reveals the content of entrepreneurial activity,							
		career stages, qualification, competence and responsibility of							
		entrepreneurs, theoretical and practical business planning and					1		
		economic expertise of business ideas, as well as analyzing							
		the risks of innovative development, development of new							
		technologies and technological solutions.							
11	Fundamentals of	The purpose of the discipline Fundamentals of Scientific	5		V				
		Research Methods is to support students' skills and abilities	5		•		1		
L	icocurer research	restarter interious is to support students skins and donities				I	 	I – – – – – – – – – – – – – – – – – – –	

r			r	,		 	 	 	,
methods	in the field of methodology of scientific cognition. Brief								
	description of the discipline. Methodological foundations of								
	scientific cognition. The concept of scientific knowledge.								
	Methods of theoretical and empirical research. The choice of								
	the direction of scientific research. Stages of research work.								
	Research topic and its relevance. Classification, types and								
	tasks of experiment. Metrological support of experimental								
	research. Computational experiment. Methods of processing								
	the results of the experiment. Formalization of research								
	results. Presentation of research work.								
12 Ecology and life safety	The discipline examines the objectives of ecology as a	5			V				
	science, environmental terms, laws of economic development								
	and safety aspects of the work environment. Environmental								
	monitoring and management in the field of its safety. Sources								
	of pollution of atmospheric air, above-ground, underground								
	water, land and ways of solving environmental problems;								
	safety of life in the technosphere; occurrence of situations of								
	natural and man-made character								
· ·	Cycle of basi	c disciplin	es						
	University (
13 Mathematics I	The course is designed to study the basic concepts of higher	5	V						
	mathematics and its applications. The main provisions of								
	disciplines used in the study of all general engineering and								
	special disciplines taught by graduate departments. The								
	course sections include elements of linear algebra and								
	analytic theory, introduction to analysis, differential calculus								
	of functions of one and several procedures. Questions,								
	methods of system solutions, and applications of vector								
	calculus to problems in theory, mechanics, and physics are								
	considered. Analytic geometry in the plane and in space,								
	differential calculus of functions of one variable, derivative								
	and differentials, study of functions of behavior, gradient and								
	gradient derivative, extremum of a function of several								
	criteria.								
14 Mathematics II	The discipline is a continuation of Mathematics I. The course	5	1	V					
	sections include integral calculus of functions of one variable								
	and several functions, series theory. Indefinite integrals, their								
	properties and how to calculate them. Definite integrals and								
	their applications. Non-unique integrals. Theory of numerical								
	series, theory of series definition, control and McLorean								
	series, application of series to approximate calculations.								
	, -FF							 	1

			r	,		r	 r	 -	1	r	
15 Physics	The course studies the basic physical phenomena and laws of	5	V					1			
	classical and modern physics; methods of physical research;										
	influence as physics, the science of engineering development;										
	the relationship of physics with other sciences and its role in										
	solving scientific and technical problems of the specialty.										
	The course corresponds to the following sections: mechanics,										
	mechanical harmonic waves, basics of molecular-kinetic										
	theory and thermodynamics, electrostatics, direct current,										
	electrogennetism, geometrical optics, wave properties of										
	light, laws of thermal radiation, photoelectric effect.										
16 Engineering	and The course develops in students the following skills: to depict	5	V								
computer graphics	all possible combinations of geometric forms on the plane, to										
	make studies and their measurements, allowing image										
	transformations; to create technical drawings, which are the										
	main and reliable means of information, providing										
	communication between the designer and the designer,										
	technologist, builder. Familiarizes students with the basics of										
	automated preparation of the graphical part of design										
	documents in the AutoCAD environment.										
17 General chemistry	The aim of the discipline is to study the basic concepts and	5		V							
	laws of chemistry; fundamental laws of chemical										
	thermodynamics and kinetics; quantum-mechanical theory of										
	atom structure and chemical bonding. Solutions and their										
	types, redox processes, coordination compounds: formation,										
	stability and properties. Structure of matter and chemistry of										
	elements.										
18 Physical chemistry	To form in students: the ability to understand the physical	5				V					
	and chemical essence of processes and use the basic laws of										
	physical chemistry in complex production and technological										
	activities. After mastering this discipline the student should										
	know: the laws of thermodynamics; basic equations of										
	chemical thermodynamics; methods of thermodynamic										
	description of chemical and phase equilibria in										
	multicomponent systems; properties of solutions; basics of										
	electrochemistry; basic concepts, theories and laws of										
	chemical kinetics and catalysis.										
19 Technological mineral	logy General information about mineralogy. Formation of	4			V						
	minerals in nature. Basic concepts of crystals. Properties of										
	minerals and their classification. Properties of minerals used										
	in processing of various mineral raw materials to obtain										
	metals are studied. Concepts of minerals and deposits.							1			

		1						-			
		Deposits of minerals of the Republic of Kazakhstan.									
20	Fundamentals of mineral	Processes of preparation of mineral raw materials for	6			V					
	processing	enrichment, basic regularities used in their realization,									
		processes of separation of minerals on the basis of									
		contrasting physical and physical-chemical properties, laws									
		of physics and chemistry underlying these processes,									
		auxiliary processes realized in technologies of enrichment of									
		solid minerals, designs of apparatuses used in various stages									
		of technologies of processing of mineral raw materials,									
		technologies of treatment of waste water and storage of									
		wastes of enrichment factories, control over the quality of									
		enrichment of minerals.									
21	General metallurgy	This course is an introduction to metallurgy and helps the	5				V				
		student learn the basic terms and definitions in metallurgy,									
		general principles of process design, and the design and									
		operating principles of basic metallurgical units.									
22	Theory of metallurgical	Theory of pyro-, hydro- and electrometallurgical processes:	5				V				
	processes I	basic regularities, kinetics and thermodynamics of reactions,									
		and properties of metallurgical melts. Such processes as									
		liquation, recrystallization, distillation, rectification,									
		dissolution, extraction, ion exchange, cementation and									
		precipitation of metals and oxides from solutions by gases,									
		etc. are described.									
23	Metallurgical Process	Theory of liquation methods of metal refining, evaporation,	5				V				
	Theory II	sublimation, condensation and sublimation processes,									
		properties of oxide and sulfide melts, thermodynamics and									
		kinetics of metal oxidation, carbon and oxide reduction									
		processes, physicochemical bases of sulfide processing.									
		Thermodynamics and kinetics of leaching, extraction and									
		sorption processes.									
24	Metallurgy of heavy non-	Technological and theoretical foundations of metallurgical	5		V						
	ferrous metals	processes of copper, nickel, lead and zinc production.									
		Properties of these metals and their compounds, preparation									
		of raw materials for metallurgical processing.									
		Pyrometallurgical and hydrometallurgical methods of									
		processing: roasting, smelting conversion, fire refining,									
		leaching, solution purification, electrolysis and their									
		hardware design. Methods of processing of industrial									
		products and new technologies to improve the complexity of									
		use in the metallurgy of heavy non-ferrous metals.									
25	Metallurgy of noble	Properties and applications of noble metals and their	5				V				

	. 1			l		1			<u> </u>		1	ı
	metals	compounds. Sources of raw materials and history of										
		development of noble metals (gold and silver) mining. Types										
		of ores, minerals, enrichment and preparation of raw										
		materials for metallurgical processing. Theoretical basis and										
		practice of processes of opening (decomposition) of minerals										
		of primary and alluvial ores and extraction of noble metals										
		from them. Refining of noble metals. Apparatus design of the										
		main processes. Methods of associated extraction of noble										
		metals from industrial products and wastes of metallurgical										
		production. New technologies in the metallurgy of noble										
		metals.										
26	Metallurgical heat	Technical Thermodynamics. Introduction to metallurgical	5		V							
	engineering	heat engineering. Heat generation due to chemical energy of										
		fuel and electricity. Basic provisions of the theory of heat										
		transfer. Heat transfer by conduction. Heat transfer by										
		convection. Heat transfer by radiation. Mechanics of liquids										
		and gases. Fundamentals of the theory of similarity and										
		modeling. Fundamentals of general furnace theory. Thermal										
		operation and construction of kilns and drying furnaces.										
		Smelting and foundry furnaces. Refractory materials. Energy										
		equipment. Utilization of secondary energy resources.										
27		Composition and properties of the gas phase.	5				V					
	(in English)	Thermodynamics of metallurgical processes. Theory of										
		dissociation and strength of chemical compounds. Structure										
		and properties of oxide and metallic melts. Fundamentals of										
		interaction of metallic and oxide phases. Kinetics of										
		processes. Preparation of raw materials for metallurgical										
		process. Classification of metals. Metallurgy of ferrous										
		metals. Production of pig iron and steel. Metallurgy of non-										
		ferrous metals. Hydrometallurgy. Pyrometallurgy.										
		Metallurgical calculations										
28	Metallurgy of light metals	Methods of stripping ores, concentrates, industrial products	5									
		containing light metals. Processing of light metal compounds										
		by hydro- and pyrometallurgical methods of concentration,										
		separation to obtain pure compounds and their further										
		processing by rectification, electrolysis, thermal processes.		ļ								
29	Organization and	Methodological foundations of scientific cognition and	4									
	planning of experiment	creativity; organization and conduct of experimental										
		research. Methods of theoretical and empirical level of										
		research. Processing and analysis of data, their registration in										
		the report. Technique of working with literature. Technique										

		of laboratory experiment. Familiarization with the processes									
		and apparatus for experimental work. Checking the									
		reproducibility of experiments. Methods of processing the									
		results of the experiment. Fundamentals and methods of									
		planning an experiment. Planning of the experiment of the									
		first order and full, fractional factor experiments.									
		Optimization. Gradient method of experiment planning. The									
		essence of the simplex planning method.									
30	Heat power engineering	Basic concepts and definitions of the working body and its	5				V				
	of metallurgical processes	main parameters, analysis of the fundamental laws of									
		thermodynamics, thermodynamic processes, differential									
		equations of thermodynamics, flow and throttling of gases									
		and vapors. Reciprocal conversion of heat into work, the									
		relationship between thermal, mechanical and chemical									
		processes that take place in thermal and cooling mechanisms.									
		Heat generation due to chemical energy of fuel and									
		electricity. Basic provisions of the theory of heat transfer.									
		Cycle of basic di	sciplines El	ective	1	I		ı I			
		•	onent								
31	Fundamentals of complex	Non-ferrous metallurgy of the Republic of Kazakhstan is	5			V					
		characterized by a variety of raw materials, complex	-								
		technological schemes, large volumes of technogenic									
	materials	materials, which must be effectively processed with the									
		extraction of valuable components.									
32	Geotechnologies in	Geochemical processes in the Earth's crust. Formation of	5			v					
		minerals and deposits of non-ferrous and ferrous metals. By	5			•					
		methods of geotechnology. Possibilities of metal extraction									
		by geotechnological methods. Selection of the method of									
		geotechnological extraction of metals in accordance with the									
		nature and condition of ore reserves. Underground, borehole									
		and group leaching. Influence of the nature of the reagent on									
		metal recovery.									
33		Basic laws of theoretical and applied electrochemistry.	5		 	V					
33	special electrometanurgy		5			v					
		Technological fundamentals of electrorefining and electrodeposition of non-ferrous metals in aqueous and									
		molten media, electroplating the surface of products, as well									
		as the production of metal powders under electrolysis									
		conditions.	~		 				 		
		Definition and classification of composite materials. Basic	5			V					
	materials	concepts of mechanics of composite materials: modulus of									
		elasticity, strength, fracture, chemical, thermal and									

	1			1	<u> </u>	 	-	-	 	 	
		mechanical stability. Components used in the production of									
		composite materials: matrix and reinforcing materials and									
		their obtaining.				 				 	
35		Issues of theory and practice of modern autogenous processes	5				V				
	metallurgy	of processing of non-ferrous metal raw materials (KIVCET,									
		PZHV, Outokumpu-Ou, QSL, Ausmelt, Isasmelt, etc.).									
		Technological schemes of productions, designs and principle									
		of operation of metallurgical units, basic technical and									
		economic indicators of processes.									
36	Powder metallurgy	Classification of methods of obtaining powder materials.	5				V				
		Mechanical methods of obtaining powder materials.									
		Reducers used in powder metallurgy. Obtaining powders by									
		methods of reduction of chemical compounds of metals.									
		Examples of obtaining powder metals by methods of high-									
		temperature reduction of chemical compounds. Obtaining									
		powder materials by reduction from solutions.									
37	Dust collection and gas	The course "Dust collection and purification of gases in non-	6				V				
	purification in non-	ferrous metallurgy" examines the processes occurring in									
	ferrous metallurgy	various gas cleaning devices, the design of dust collectors,									
		conditions and features of their operation, as well as methods									
		of their calculation. The schemes used for purification of									
		gases from dust and harmful gaseous components in various									
		shops of ferrous and non-ferrous metallurgy enterprises are									
		studied.				 				 	
38	Metallurgical furnaces	The main types of fuel and its combustion, classification and	6				V				
		general characteristics of furnace operation, materials used in									
		furnace construction, the course program provided for the									
		study of elements and designs of a number of furnaces used									
		in non-ferrous and ferrous metallurgy.		<u> </u>							
		Cycle of special									
20	Matallunary of none or 1	University The concept of "rare metals", technical classification of these	componer 4	ι Ι	<u> </u>			V		I	
39	Metallurgy of rare and disseminated metals		4					V			
	disseminated metals	metals. The position of rare earth metals in the periodic table of elements Mendeleev and features of the technology of									
		obtaining rare metals. Physical and chemical properties, areas									
		of application, sources of raw materials of rare metals. The									
		main processes of processing of raw materials of rate metals. The									
		metals, with the production of finished products in the form									
		of chemical compounds or pure metals. Physico-chemical									
		bases and technology of production of dispersed rare metals									
		(rhenium, selenium, tellurium, germanium, gallium, indium,									
		rinemum, selemum, tenunum, germanium, gamum, mutum,									

	thallium), characterized physical and chemical properties,							
	areas of application of these metals. Methods of production							
	of chemical compounds of diffuse metals from ore and							
	secondary raw materials, the use of liquid extraction and ion-							
	exchange resins in solution processing schemes, issues of							
	integrated use of raw materials are considered. Methods of							
	metal recovery from various compounds and production of							
	compact metals by smelting and powder metallurgy methods							
	are covered and compared.							
40 Alloys of non-ferrous	Basic processes of melting of non-ferrous metal alloys	5				V		
metals	includes theoretical, technological and constructive questions	5				•		
incluib	in the field of traditional and new metallurgy processes.							
	Acquisition of competencies in analyzing metal production							
	technologies, developing technological schemes and designs							
	of metallurgical units and carrying out technological							
	calculations.							
41 Metallurgy of secondary		5				V		
raw materials	Theoretical bases and technological schemes of leaching	-						
	processes. Thermodynamics and kinetics of leaching							
	processes. Oxidation-free and oxidative leaching of							
	metallurgical raw materials. Hydro- and electrometallurgical							
	processing of sulfide materials. Theory and practice of							
	extraction and sorption processes. Fundamentals of							
	precipitation processes of poorly soluble compounds.							
	Fundamentals of hydro- and electrometallurgical processes.							
	Thermodynamics of electrochemical processes in the							
	processing of metallurgical raw materials and obtaining							
	metals.							
42 Modern environmental	Main factors of metallurgy impact on the environment.	6			V			
schemes and forecasting	Consumption of primary and secondary resources. Saving of							
in metallurgy	materials and energy. General principles of creation of							
	ecologically clean metallurgy and requirements to it.							
	Formation of ecological strategy at full cycle plants.							
	Classification of man-made resources. Payment for							
	environmental pollution. Assessment of ecological damage.							
	Ecological and economic efficiency. Main tasks, objects,							
	methods and classification of environmental monitoring							
	system. Environmental management system. Environmental							
	certification. Basic provisions of the series of standards and							
	certification for compliance with ISO 14000 standards.							
	Cycle of special	zed disciplir	nes				 	

		Optional c	omponent					
		Physico-chemical basis and technology of production of non- ferrous metals from ore and secondary raw materials. Characteristics of raw materials, methods of charge preparation, pyro- and hydrometallurgical processing. Equipment, technical and economic indicators of modern metallurgical processes. Integrated use of raw materials, environmental protection, prospects for the development of	5		V			
	heory and practice of etal refining	Methods of separation, concentration and purification of metals (extraction, ion exchange, electrolysis and electrodialysis, crystallization from solutions and melts, purification and separation of metals by methods of vacuum and gas-phase metallurgy, etc.).), instrumentation of technological processes, engineering methods of calculation of metal purification.	5		V			
		Methods of processing of technogenic raw materials of some heavy non-ferrous, noble, light and rare metals. Modern pyro- and hydrometallurgical methods of processing technogenic wastes, basic technological schemes and apparatus design of processes of production of basic heavy, rare, light and noble metals from lump waste, slags, dusts, sludge, industrial solutions.	4		V			
of	f metals	Interaction of metals with the environment around them, about the mechanism of this interaction; to teach the use of physical and chemical regularities to predict the corrosion resistance of metals, to apply appropriate methods of protection. Classification of corrosion processes. Films on metals. Diffusion mechanism in protective films. Electrochemical corrosion. Thermodynamics of electrochemical corrosion. Secondary processes and products of electrochemical. Classification of protection methods. Methods of protection against chemical and electrochemical corrosion.	4		V			
	opper and nickel etallurgy	Technological schemes and processes of processing raw materials containing copper, nickel and other related valuable components; theoretical bases of technological processes of metal production; designs of metallurgical units and principles of their operation, mode parameters and indicators.	6			V		
	roduction of special- urpose alloys	Features of technologies for obtaining pure refractory metals. Trends in the development of refractory metals metallurgy in	6			V		

	1	,		 		 		
		the XXI century. Prospects of application of refractory metals. Production of refractory metal-based alloys by direct						
		synthesis and reduction methods. Production of refractory						
		metal-based alloys by methods of vapor deposition,						
		electrolysis and plasma. Theoretical bases of mechanical						
		alloying processes. Organization and course of mechanical						
		alloying process. Influence of reagents controlling the						
		process. Technology of foundry alloys. Preparation of						
		sintered materials and alloys.						
49	Metallurgy of lead and	Technological schemes and physicochemical basis of	5			V		
	zinc	processes of lead and zinc production from ores, concentrates						
		and industrial products. Modern pyro- and						
		hydrometallurgical methods of lead and zinc production,						
		basic technological schemes and hardware design of the						
		processes of production of these metals. Processes of						
		preparation of raw materials for metallurgical processing,						
		processes of reductive smelting in shaft furnaces, roasting						
		processes, leaching, cleaning solutions from impurities, fire						
		refining, electrolytic refining in aqueous media to obtain						
		commercial lead and zinc.						
50	Modern principles of	Basics of modern transformations of resource and energy	5			V		
	resource and energy	saving in metallurgy of rare metals: lithium, beryllium,						
	saving in rare metals	gallium; refractory metals: vanadium, titanium, molybdenum,						
	metallurgy	tungsten occur. Fundamentals of resource-saving complex						
		processing of rare and refractory rare metals. Integrated						
		processing of ingredients and wastes of production of rare						
		and refractory rare metals. Principles of energy saving. The						
		choice of technological scheme allows for the integrated use						
		of natural resources, refractory rare metals taking into						
		account environmental requirements.						
51	Fundamentals of	The concept and idea of design of industrial facilities,	5		I T		V]
	metallurgical production	development and/or preparation of design and estimate						
	design	documentation for the construction of subjects of new and/or						
		changes to existing metallurgical facilities during their						
		expansion, modernization, technical re-equipment,						
		reconstruction, restoration, overhaul, conservation and						
		postutilization. Design of metallurgical facilities should be						
		carried out taking into account the provisions of current						
		legislation and state regulations in the field of architectural,						
		urban planning and construction activities.						
52	Technology of refractory	Classification of refractory materials. Raw materials for	5				V	

				1		 	 	 			
	and heat-insulating	production. Refractory products. Principle scheme of									
	materials	production and structure of refractories. Structure of									
		refractories. Working properties of refractory materials:									
		refractoriness, gas permeability, dimensional constancy, heat									
		resistance, chemical resistance and slag resistance. Physical									
		properties of refractories: thermal expansion coefficient, heat									
		capacity, thermal conductivity, electrical conductivity.									
		Characteristics of some refractory materials (silica,									
		aluminosilicate, fireclay, high alumina, magnesia-based and									
		others).									
53	Recycling technologies in	Secondary raw materials of heavy non-ferrous metals.	5						V		
		Preparation of secondary raw materials of heavy non-ferrous									
		metals for metallurgical processing. Fundamentals and									
	25	methods of pyro- and hydrometallurgical processing of									
		secondary raw materials of heavy non-ferrous metals.									
		Apparatus design of obtaining secondary heavy non-ferrous									
		metals. Technology of processing waste and secondary raw									
		materials of lead, copper, zinc, nickel. Auxiliary processes in									
		the production of secondary heavy non-ferrous metals.									
		Ecological and economic aspects of production of secondary									
		heavy non-ferrous metals.									
54	Recycling metallurgy and	Processes and technologies of the 2nd process - refining of	5						V		
	product design	rough metals, production of steel and alloys, methods of									
	r	metal scrap processing; processes and technologies of the 3rd									
		process - metal pressure treatment in order to obtain metal									
		products of a given design; processes and technologies of the									
		4th process - additional processing of rolled products;									
		production of metalware; processing of secondary slags, as									
		well as methods of modern design with the use of 3D-									
		modeling of products.									
55		This course "Metallurgy of Small Metals" (Cd, Co, Bi, etc.)	4							V	
		helps the student to master the basic physical and chemical	·								
		laws in the processes of metallurgy of small metals and									
		obtaining small metals by pyro- and hydrometallurgical									
		methods.									
56	New technologies in	Chloride and autoclave-reduction methods of lead	4							V	
	metallurgy	production. Autoclave processing of low-grade zinc	-								
		concentrates. The newest production technologies also affect									
		its alloys. New metallothermic and electrochemical processes									
		for titanium production. Bioleaching of copper-containing									
		raw materials, solvent extraction technology, electrolysis									
L		ran materials, sorrent extraction technology, electrolysis									

			-			 	 r		
		(SX/EW). Extraction and sorption methods of metal							
		extraction. Off-domain methods of ferrous metals extraction.							
57	Modeling of metallurgical	The concept of models and simulation, systems and their	5						V
	processes	characteristics. Theories and similarity criterion for modeling							
		processes. Methods of identification. Methods of							
		development of information databases. Visualization and							
		animation of models.							
58	Metallurgical systems	Current state and development of physicochemical methods	5						V
	research	of research of metallurgical systems and processes; methods							
		of measuring temperatures, viscosity, density, electrical							
		conductivity and surface tension of melts, measurement of							
		vapor pressure of metals and their compounds, methods of							
		quality control of metal products; basics of thermodynamic							
		and kinetic analysis of pyrometallurgical and							
		hydrometallurgical processes							

5. Curriculum of the educational program

S	ATBAYEV INIVERSITY of Educati							A See		irman	of th	e Ma		ient B	OVED
	of Educati						F	lecto	r of K	AZNR	12	1112 2	48		payev
	of Educati								4		»			0	ntaev 23 y.
	of Educati									Ċ	f " 7		P		bes.
	of Educati							1220			1	500			
	of Educati	anall	Duoguan	CU	RRIC	ULUM	2022.20	24	Cords Cords	VH * #8	MEJON NI				
		Unari	riogram	I OII EI	ironne	int for	2023-20	24 ac	acem	ic yea					
	Education									netals	"				
	Gi	oup o	of educa	tional	progra	ims B1	71 - "M	etallı	irgy"						
	Form of study: full-time Dur	ation o	of study:	4 year	s Acad	lemic d	egree: Ba	achelo	r of E	nginee	ring a	nd Te	chnolo	gy	
					classro	SIS		Alloc	ation o					ed on c	ourses
			Total		om	(inclu		T		-		mester		187	
Discipline code	Name of disciplines	Cycle	amount in	Total hours	volum e of	ding TSIS)	Form of control	1	2		urse		ourse	1 v c	ourse
			credits		lek/lab	in		seme	semes	3 semes	4 seme	5 seme	6 seme	semes	8 semes
					/pr	hours		ster	ter	ter	ster	ster	ster	ter	ter
CYCLE C	F GENERAL EDUCATION DIS	CIPLI			la of lan				_		-			_	
		GED,			le of lan				-		-				
LNG108	English language	RC	10	300	0/0/6	210	E	5	5						
LNG104	Kazakh (Russian) language	GED, RC	10	300	0/0/6	210	E	5	5						
KFK101-		CED	M-2	. Modu	le of phy	ysical tr	1			-	-		-		
104	Physical Culture	GED, RC	8	240	0/0/8	120	Difcredi t	2	2	2	2				
	2		M-3. M	odule o	f inform	nation to	chnology				× 11				
CSE677	Information and communication technologies (in English)	GED, RC	5	150	2/1/0	105	Е				5				
			M-4. Mo	dule of	socio-cu	ltural d	evelopme	nt					_		
HUM137	History of Kazakhstan	GED, RC	5	150	1/0/2	105	SE	i. •	5						
HUM132	Philosophy	GED, RC	5	150	1/0/2	105	Е				5	_			
HUM120	Socio-political knowledge module (sociology, politology)		3	90	1/0/1	60	Е				3				
11.11.1		GED, RC					10. The	1.1	-						
HUM134	Socio-political knowledge module (culturology, psychology)		5	150	2/0/1	105	Е			5					
		Module	of enti-	orrunt	on cult	Ire and	ogy and I	ifesef	aty has	•			_		
	The base of anti-corruption	Todule	or anti-C	Juli	on cuitt		ogy and I	ne sal	cty bas						
HUM136	culture and law			_									. 2		
MNG489	Fundamentals of economics and entrepreneurship	GED, CCH	5	150	2/0/1	105	Е			5					
HPP128	Fundamentals of research methods	ССП													•
	Ecology and life safety														
CYCLE O	F BASIC DISCIPLINES (BD)							-							
			Module	of phys	ical and	mather	natical tra	ining							
MAT101	Mathematics I	BD, UC	5	150	1/0/2	105	Е	5							
PHY468	Physics	BD, UC	5	150	1/1/1	105	E	5	-						
MAT102	Mathematics II	BD, UC	5	150	1/0/2	105	Е		5						
			M-	7. Mod	ule of ba	sic trai	ning	di.							
	Engineering and computer	BD,													

CHE495	Chemistry	BD, UC	5	150	1/1/1	105	E	Γ	5						
CHE127	Physical chemistry	BD, UC	5	150	1/1/1	105	Е		1.00		5				
MET514	Fundamentals of complex processing of polymetallic raw materials	BD, CCH	5	150	2/0/1	105	E					5			
MET657	Geotechnology in metallurgy	1			2/0/1										
MET518	Special electrometallurgy	BD,			2/0/1										
MET611	Technolodgy of composite materials	CCH	5	150	2/0/1	105	E						5		
MET652	Autogenous processes in metallurgy	BD, CCH	5	150	2/0/1	105	Е						5		
MET599	Powder metallurgy	CCII			2/0/1										
MET653	Dust collection and gas cleaning in non-ferrous metallurgy	BD,	6	180	2/0/2	120	Е		an si					6	
MET612	Metallurgical furnaces	CCH			2/0/2										
AAP179	Educational practice	BD, UC	2		0/0/2				2						
			M-8. B:	asic trai	ning mo	dule in n	netallurg	sy .	1						
MET501	Technological mineralogy	BD, UC	4	120	2/1/0	75	Е	4	5.00						
MET163	Basics of mineral deposits milling	BD, UC	6	180	2/1/1	120	E			6					
MET500	General metallurgy	BD, UC	5	150	2/0/1	105	Е			5					
MET619	Theory of metallurgical processes I	BD, UC	5	150	2/1/0	105	Е			5					
MET503	Metallurgy of heavy non-ferrous metals	BD, UC	5	150	2/1/0	105	Е				5				
MET596	Theory of metallurgical processes	BD, UC	5	150	2/1/0	105	Е				5				
MET510	Metallurgy of precious metals	BD, UC	5	150	2/0/1	105	Е					5			
MET620	Metallurgical heat engineering	BD, UC	5	150	2/1/0	105	Е					5	-		
MET621	Metallurgical engineering (in English)	BD, UC	5	150	2/0/1	105	E					5	-		
MET654	Metallurgy of light metals	BD, UC	5	150	2/1/0	105	E					5	-		_
MET658	Organization and planning of experiment	BD, UC	4	120	2/0/1	75	Е		-			4			
	Heat engineering of metallurgical processes	BD, UC	5	150	2/0/1	105	Е						5		
YCLE OI	F PROFILE DISCIPLINES (PD)														
			. Module	of prof	essional	activity	in metal	lurgy							
	Metallurgy of rare and dispersed metals	PD, UC	4	120	2/0/1	75	Е		1.2				4		
MET656	Non-ferrous metal alloys	PD, UC	5	150	2/0/1	105	Е	-						5	
	Metallurgy of secondary raw materials	PD, UC	5	150	2/1/0	105	Е							5	
	Modern ecological schemes and forecasting in metallurgy	PD, UC	6	180	2/0/2	120	E							6	
			M-10	. Profes	sional a	ctivity m	odule		1.1						
	Processes and devices in non- ferrous metallurgy	PD,		1.00	2/0/1	105									
	Theory and practice of metal refining	CCH	5	150	2/1/0	105	Е						5		
	Processes of processing of technogenic waste	PD,			2/0/1										
AFT650	Corrosion and protection of netals	CCH	4	120	2/1/0	75	E	-	s v				4		
	Copper and nickel metallurgy	PD,			2/1/1										
	Production of special alloys	CCH	6	180	2/1/1	120	E							6	

	Total based on UNIVERSITY:						6 a 1 a 1	31	29	28	32	29	31	33	27
AAP500	Military affairs	ATT	0												
L L D FOC	A (1)/			dule of	addition	al types	of traini	ng							
ECA108	Final examination	FA	8												8
	I		010000	2. Mod	ule of fin	al attest	ation								
MET583	Metallurgical systems research	cen			2/1/0										
MET558	Modelling of metallurgical processes	PD, CCH	5	150	2/0/1	105	Е								5
				M-11. N	Iodule o	f "R&D									
AAP183	Production practice II	PD, UC	3		0/0/3		1 w						3		
AAP143	Production practice I	PD, UC	2		0/0/2						2				
MET697	New technologies in metallurgy	CCII			2/0/1										
MET455	Metallurgy of small metals (Cd, Co, Bi, etc.)	PD, CCH	4	120	2/0/1	75	E								4
MET582	Advanced metallurgy and product design	ССН	2	150	2/0/1	105	Е								5
MET545	Recycling technologies in heavy non-ferrous metals metallurgy	PD,	5	150	2/1/0	105									
MET594	Technology of refractory and heat- insulating materials	CCH	2	150	2/0/1	105	E								5
MET575	Fundamentals of metallurgical production design	PD,	5	150	2/0/1	105									
MET692	Modern principles of resource and energy saving in metallurgy of rare metals	PD, CCH	5	150	2/0/1	105	Е							5	
MET529	Metallurgy of lead and zinc				2/1/0						-				

	Cycles of disciplines		Cre	dits	
Cycle code		required component (RC)	university component (UC)	component of choice (CCH)	Total
GED	Cycle of general education disciplines	51		5	56
BD	Cycle of basic disciplines		91	21	
PD	Cycle of profile disciplines		25	39	176
	Total for theoretical training:	51	116	65	232
FA	Final attestation	8			.8
	TOTAL:	59	116	65	240

Decision of the Academic Council of KazNRTU named after K.Satpayev. Protocol №5, 24.11.2022 y.

Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev. Protocol №3, 17.11.2022 y.

Decision of the Academic Council of MaMI named after O. Baikonurov. Protocol №3, 15.11.2022 y.

Vice-Rector for Academic Affairs

Director of the Mining and Metallurgical Institute named

Head of department "Metallurgy and mineral processing"

Head of department "Metallurgical processes, heat engineering and technology of special materials"

Partner university: Worcester Polytechnic Institute (USA) Representative of the employers' council of the LLP "Kazakhmys"

B. Mishra

E.A. Ospanov

B.A. Zhautikov

K.B. Rysbekov

M.B. Barmenshinova

T.A. Chepushtanova

Name of additional educational programs (Minor) with disciplines	Total number of credits	Recommended semesters of study	Documents on the results of the development of additional educational programs (Minor)

6. Additional educational programs (Minor)